Persistence properties for the Fokas-Olver-Rosenau-Qiao equation in weighted L p $L^{p}$ spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BANACH SPACES EMBEDDING ISOMETRICALLY INTO Lp WHEN 0<p<l

For 0 < p < 1 we give examples of Banach spaces isometrically embedding into Lp but not into any Lr with p < r < 1.

متن کامل

Breakdown for the Camassa-Holm Equation Using Decay Criteria and Persistence in Weighted Spaces

We exhibit a sufficient condition in terms of decay at infinity of the initial data for the finite time blowup of strong solutions to the Camassa–Holm equation: a wave breaking will occur as soon as the initial data decay faster at infinity than the solitons. In the case of data decaying slower than solitons we provide persistence results for the solution in weighted L-spaces, for a large class...

متن کامل

Complex interpolation of weighted noncommutative Lp-spaces

Let M be a semifinite von Neumann algebra equipped with a semifinite normal faithful trace τ . Let d be an injective positive measurable operator with respect to (M, τ ) such that d is also measurable. Define Lp(d) = {x ∈ L0(M) : dx+ xd ∈ Lp(M)} and ‖x‖Lp(d) = ‖dx+ xd‖p . We show that for 1 6 p0 < p1 6 ∞, 0 < θ < 1 and α0 > 0, α1 > 0 the interpolation equality (Lp0(d 0), Lp1(d α))θ = Lp(d ) hol...

متن کامل

Maximal regularity for evolution equations in weighted Lp - spaces

LetX be a Banach space and let A be a closed linear operator on X. It is shown that the abstract Cauchy problem u̇(t)+ Au(t) = f (t), t > 0, u(0) = 0, enjoys maximal regularity in weighted Lp-spaces with weights ω(t) = tp(1−μ), where 1/p < μ, if and only if it has the property of maximal Lp-regularity. Moreover, it is also shown that the derivation operator D = d/dt admits anH∞-calculus in weigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2015

ISSN: 1687-2770

DOI: 10.1186/s13661-015-0488-0